CALCULATING FALL CLEARANCE: A PRACTICAL GUIDE

PART ONE

FREE FALL DISTANCE

Free fall distance (FF) is the distance a worker falls before the safety system begins to arrest a fall

PART TWO

DECELERATION DISTANCE

Deceleration distance (DD) is the distance the worker falls from activation of the safety system until finally coming to a complete stop.

Lanyards manufactured to AS1891.1 are made to limit tear-out length depending on the distance fallen.

Free Fall (FF)	600 mm	1000 mm	1500 mm	2000 mm
Deceleration Distance (DD)	300 mm	500 mm	600 mm	900 mm

PART THREE

CLEARANCE TO OBSTRUCTION

Clearance to obstruction (C) is a mandatory safety factor of 1 metre.

The distance is specified in the Australian Standard AS/NZS1891.4

Adding it all up: required fall clearance

The final calculation adds together free fall distance (FF), deceleration distance (DD) and clearance to obstruction (C).
$R D=F F+D D+C$

OPTION 1:
STANDARD 2M LANYARD

FF $=2-1.8+1.5 m$ or $1.7 m$
So RD $=1.7+0.9+1 \mathrm{~m}$ or 3.6 m

OPTION 2:

HIGH ANCHOR POINT 1.6M LANYARD

FF $=1.6-1.8+1.5 \mathrm{~m}$ or 1.3 m
So RD $=1.3+0.6+1 \mathrm{~m}$ or 2.9 m

Ground and/or first obstruction

Ground and/or first obstruction

Ground and/or first obstruction

